
www.manaraa.com

Alternatives for Eliminating Duplicate in Data Storage*

Tianming Yang, Jing Zhang, and Wei Sun

International Collage, Huanghuai University, Henan Province, China

{ytmzqyy & phzj-123}@163.com, swssl@yahoo.com.cn

*
This paper was supported by the Key Science-Technology Project of Henan of China under Grant No.112102210446.

 Abstract –Duplicate Elimination (DE) is a specialized data

compression technique for eliminating duplicate copies of repeating

data to optimize the use of storage space or bandwidth. The most

common form of DE implementation works by dividing files as

chunks and comparing chunks of data to detect duplicates. This paper

implements a content-based chunking algorithm to improve duplicate

elimination over fixed-sized blocking, and evaluates the methods of

chunk comparison, that is, compare-by-hash versus compare-by-

value. It indicates that compare-by-hash is efficient and feasible even

employed in ultra-large-scale storage systems.

 Index Terms – Data Storage, Duplicate Elimination, Compare-

by-Hash.

1. Introduction

In recent years, we have seen rapid growth in the amount

of digital information, which poses big challenges for modern

enterprises to protect their valuable data [1]. In order to

reduce the amount of storage needed for backups, storage-

based DE is now getting popularity [2, 3, 4, 5]. It has been

proved very effective in applications where many copies of

very similar or even identical data are stored on a single disk

or in the case of data backups where most data in a given

backup is unchanged from the previous one [6]. Traditional

backup systems try to reduce storage requirement by hard

linking files that have not changed or storing differences

between files. But hard linking does not help with large files

that are changed in small ways, such as an email database;

differences only find duplicates in adjacent versions of a single

file. In contrast, storage-based DE eliminates duplicate in the

global system, hence can achieve far more efficient data

compression than traditional backup methods. DDFS [2], for

example, reported a 38.54:1 cumulative compression rate

when backing up a real world data center over a time span of

one month.

The most common form of DE implementation works by

dividing data stream as chunks and comparing chunks of data

to detect duplicates. Dividing data stream as fixed-sized blocks

is straightforward and consonant with mainstream file systems

in which files are managed as fixed-sized logical blocks, and

there indeed exist DE systems such as Venti [7] and DDE [8]

that eliminate duplicated copies of fixed size data blocks.

However, fixed-sized blocking will result in shifting-offsets-

problem that a single byte inserted at the start of a large file

would shift all the block boundaries, and thereby thwart any

potential storage savings [9]. In order to solve the shifting-

offset-problem, other chunking algorithms, such as the

semantic-based chunking algorithm ADMAD (Application-

Driven Metadata Aware Deduplication) [10], and the content-

based chunking algorithms CDC (Content-Defined Chunking)

[9], TTTD (two-threshold, two-divisor) [11], Fingerdiff [12]

and BiCDC (Bimodal Content Defined Chunking) [13] etc.

have been proposed. The most commonly used CDC algorithm

uses hashing technique to determine chunk boundaries to

divide the data stream into variable-sized data chunks.

Compared with fixed-sized blocking, the content-based

chunking algorithms may be more time-consuming but more

effective in duplicate elimination. This paper implements a

content-based chunking algorithm in order to evaluate its CPU

overhead and compare it with the simplest fixed-sized

blocking method in term of duplicate elimination effectiveness.

There are two methods to determine whether two data

chunks are identical: compare-by-value and compare-by-hash.

Compare-by-value does a byte by byte comparison of the

newly written chunk with the previously stored chunk.

However, such a comparison is onerous since it‟s only

possible by first reading the previously stored chunk from disk.

This would make it extremely difficult if not impossible to

maintain the needed throughput. Compare-by-hash relies on

the use of cryptographic hash functions [14, 15, 16, 17] to

identify duplicate chunks of data. Two chunks with the same

hash value are assumed to be identical. This hash-based

comparison is more efficient than otherwise the byte by byte

comparison of chunks since a hash value is usually far smaller

than the chunk itself and can be stored compactly in a hash

table or in-memory cache. However, there exists the

probability of hash collision that two different chunks generate

the same hash value. Thus, the concern arises that data

corruption can occur if a hash collision occurs, and additional

bit-for-bit validation of original data for guaranteed data

integrity should be offered [18, 19]. This paper analyzes the

probability of hash collision when using compare-by-hash in

large-scale storage systems. It indicates that if using

appropriate cryptographic hash function, the compare-by-hash

is feasible even employed in ultra-large-scale storage systems.

2. The Content-Based Chunking Algorithm

The most commonly used content-based chunking

algorithm is the CDC algorithm [9], which uses hashing

technique to determine chunk boundaries to divide the data

stream into variable-sized data chunks. Specifically, it

calculates the Robin hash [20] of each overlapping w byte

segment of the file. When the low-order k bits of a segment‟s

hash value equals to a constant pre-determined value, the

International Conference on Computer, Networks and Communication Engineering (ICCNCE 2013)

© 2013. The authors - Published by Atlantis Press 565

http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Hard_link
http://en.wikipedia.org/wiki/Hard_link
http://en.wikipedia.org/wiki/Hard_link
http://en.wikipedia.org/wiki/Data_differencing
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Hash_collision
http://en.wikipedia.org/wiki/Data_corruption
http://en.wikipedia.org/wiki/Data_corruption
http://en.wikipedia.org/wiki/Data_corruption
http://en.wikipedia.org/wiki/Hash_collision
http://en.wikipedia.org/wiki/Hash_collision
http://en.wikipedia.org/wiki/Cryptographic_hash_function

www.manaraa.com

segment constitutes a chunk boundary to divide the data

stream into variable-sized chunks. The parameter k determines

the expected chunk size that is 2
k
bytes.

A. Algorithm Implementation

In order to evaluate its performance in terms of CPU

overhead and chunking speed, we have implemented the CDC

algorithm as following:

{input the file F to be divided;

 let anchorMask=00001FFFH; magicValue=61; M=2
32

;

p=17; w=48;

FILE *f =open (F, ′r′); char b[w], c, c1;

cleaning the chunk-queue L, integer-queue Q and char-

queue C;

if (length (f) <=w) { L.add(F); exit;}

fgets(b,w,f);

pos=w−1; RF= (b[0]×p
w-1

+b[1]×p
w-2

+…+b[w−1]) mod M;

if (RF&anchorMask==magicValue) Q.add(pos);

for(i=0; i<=w−1;i++) C.add(b[i]);

while(c=fgetc(f)≠EOF){

C.add(c); c1=C.move(); pos++;

RF= (p×RF + c − c1×p
w
) mod M;

if (RF&anchorMask==magicValue) Q.add(pos);}

firstpos=0;

while (!empty(Q)){

pos=Q.move();

chunk=substring(f, firstpos, pos−firstpos);

firstpos=pos;

L.add(chunk);}

return(L).}

 In the above algorithm, parameter k is implicit in

anchorMask, which equals to „00001FFFH‟, implying that k is

13 and the expected chunk size is 8KB.

B. Algorithm Performance

The algorithm uses a w-bytes-in-size sliding window

passing along the file stream to seek out more naturally

occurring internal chunk boundaries. This sliding-window

approach makes the algorithm very compute-efficient.

Let
1 2,wa a a be the byte stream of the file, the hash

function used to identify chunk boundaries is as follow:

1 2

1

= , ...) ().
w

w i

p w i

i

RF hash a a a a p 



 （ (1)

 The calculation takes places in a ring M with multiplication

and addition. M and p are constants and p is a prime. This hash

function has two important characteristics which can be used

to speed up the chunking process.

 The calculation time is linear in w (1 multiplication

and 1 addition).

 1 2

1

, ...) ()
w

w i

p w i

i

hash a a a a p 



 （

1

1

1

()
w

w i

i w

i

a p p a


 



 

1 2 1(, ...)p w whash a a a p a 

1 2 3= (((...(())...))).wp p p a a a a    (2)

So, the time complexity of this hash algorithm is O(w) with

w be the number of bytes to be hashed.

 Easy to calculate consecutive w bytes.

2 3 1(, ...)p whash a a a 

1

1 2 1 1(, ...) .w

p w wp hash a a a a a p 

     (3)

 The algorithm first computes the hash of the first w bytes

using formula (1), and then it just needs to slide forward one

byte to compute the hash of next w bytes using formula (3). To

further speed up the process, we can compute a table of all

possible values of 1()modw

ia p M for all 256 byte values

and uses it throughout.

 We run the algorithm on a computer with Inter Celeron

2.40GHz CPU, 512MB RAM and a 7200 RPM 80GB Seagate

ST3802110A IDE disk. Time spent on content-defined

chunking mainly includes detecting the chunk boundary over

the sliding-window. The measured chunking speed is about

45.14MB/s with an average CPU utilization of 20.5%. While

running the simple fixed-sized blocking algorithm with block

size of 8KB on the same computer, we got a blocking speed of

45.27MB/s with an average CPU utilization of 17.3%. The

above values are an average of 50 runs of the experiment,

using different file sizes from 100 KB to 100 MB. The results

indicate that the CPU overhead of the implemented CDC

algorithm is reasonably low and the chunking speed is mainly

limited by the disk I/O throughput before CPU becomes a

bottleneck.

 We also compared performance of the CDC algorithm and

the fixed-sized blocking algorithm in term of duplicate

elimination ratio. The data sets used for experiment include

software distribution sources, web content, geographic

information system data and research papers and reports in

various formats and languages. We cannot present the detailed

test figures here due to page limitation; instead, we give the

experimental conclusion that the CDC algorithm outperforms

the fixed-sized blocking algorithm in term of duplicate

elimination ratio by a factor of 1.17 to 3.54 depending on the

different data sets. Summary, selecting the CDC algorithm

rather than the fixed-sized blocking algorithm is more

appropriate for DE storage systems.

3. The Feasibility of Compare-By-Hash

A DE storage system could use the compare-by-value

method to determine that two chunks are identical. But this

method incurs heavy disk I/O overhead that would inevitably

degrade the DE storage performance. To avoid this overhead,

many DE storage systems [2, 3, 4, 5] rely on the compare-by-

hash method to determine the identity of a chunk. Since there

exists the probability of hash collision that may result in data

corruption, the feasibility of using compare-by-hash in DE

storage systems have caused much controversy in the research

566

http://en.wikipedia.org/wiki/Hash_collision
http://en.wikipedia.org/wiki/Data_corruption
http://en.wikipedia.org/wiki/Data_corruption
http://en.wikipedia.org/wiki/Data_corruption

www.manaraa.com

community [18, 19, 21]. This paper argues that, to design a DE

storage system with desired sized of capacity, we should select

an appropriate collision-resistant hash function and analyze the

probability of hash collision. If the probability of hash

collision is extremely small, many orders of magnitude smaller

than hardware error rate that is currently about 10
−12

~10
−15

[22,

23, 24]. When data corruption occurs, it will almost certainly

be the result of undetected errors in hardware devices, and not

from a collision.

A. Calculating the Probability of Hash Collision

Existing collision-resistant hash functions such as MD4

[14], MD5 [15], SHA-1[16], SHA-256, SHA-384 and SHA-

512 [17] have good characteristic of uniformity, that is, the

generated hash values are essentially random and independent

of each other no matter how similar the inputs are.

Supposing the length of the hash value generated by a

collision-resistant hash function is b bits, and Θ is the set of all

possible hash values, we have |Θ|=2
b
. Let Ω be the set of all

unique data chunks, DΩ, H(D) be the hash value of D, and

Pr(H(D)=h) be the probability that H(D) equals to h, then we

have:

DΩ, hΘ, Pr(H(D)=h)=1/2
b
.

 (4)

Let MΩ be the set of all the unique data chunks stored

in the DE storage system, |M|=n, p be the probability that there

exist hash collisions in the DE storage system, and then we

have:

p=Pr(A, B M|((A≠B)&(H(A)=H(B))). (5)

 Without loss of generality, assuming that the n unique data

chunks (D1, D2…Dn) are stored into the DE storage system

sequentially. Let Ek (k=1, 2…n) be the event that H(Dk) is not

collided with the previously stored hash values, then we have:

1

1 Pr()
n

k

k

p E


  

1 2 1 3 2 11 Pr() Pr(|) Pr(|) ...E E E E E E    

1 2 1Pr(| ...).n nE E E E  (6)

 Combining formulas (4) and (6), having：

 1 (1 2 / 2) (1 3 / 2) ... (1 (1) / 2).b b bp n         (7)

 According to formula (7), when 1 ≤ n ≤ 2
(b+1)/2

, there exists

the following inequality:

 0.316 (1) / 2 0.5 (1) / 2 .b bn n p n n    (8)

 Inequality (8) indicates that when n<<2
b/2

the probability of

hash collision will be very small, while n is getting close to 2
b/2

,

the probability of hash collision will experience a sharp

increase.

 It is not convenient to calculate p using formula (7) and

inequality (8). For convenience of calculation, when n<<2
b/2

,

we can approximately assume that the events of hash collision

are independent to each other. According to formula (4), the

probability of hash collision by a pair of different data chunks

is 1/2
b
, and n different data chunks have a total of n(n−1)/2

different pairs, then we have:

1(1)/2 2 (1)/ 21 (1 1/ 2) 1 (1 1/ 2)
b bb n n b n np

        

 11 exp((1) / 2).bn n     (9)

When n<<2
b/2

, n(n−1)/2
b+1

<<1, then we have:

1 11 exp((1) / 2) (1) / 2 .b bp n n n n       (10)

B. The Probability of Hash Collision in DE Systems

Let C be the physical capacity of the large-scale DE

storage system, s be the expected chunk size, then n=C/s. We

calculate the probability of hash collision under different

design parameters of the DE storage system using formula (10).

The calculation results are listed in TABLE I.

TABLE I Hash Collision Probability in Different DE Storage Systems

C (byte) s (byte) n H b(bit) p

260 28 252 MD5 128 2−25

260 213 247 MD5 128 2−35

250 28 242 MD5 128 2−45

250 213 237 MD5 128 2−55

260 28 252 SHA-1 160 2−57

260 213 247 SHA-1 160 2−67

250 28 242 SHA-1 160 2−77

250 213 237 SHA-1 160 2−87

250 28 242 SHA-256 256 2−173

250 213 237 SHA-256 256 2−183

272 28 264 SHA-256 256 2−129

272 213 259 SHA-256 256 2−139

The results in TABLE I show that for petabyte-scale DE

storage systems (2
50

bytes≤C＜2
60

bytes) with an expected size

of 256 bytes or 8KB, using MD5 hash function with 128 bits

hash value, the probability of hash collision is in the range of

2
−25

~2
−55

, which is higher than the undetected hardware error

rate (currently about 10
−12

~10
−15

,i.e., 2
−40

~2
−50

) in most cases.

This indicates that using 128 bits length MD5 hash in

petabyte-scale DE storage systems is not safe enough

according to the reference criterion of hardware error rate.

However, when using 160 bits length SHA-1 hash for

petabyte-scale DE storage systems with an expected size of

256 bytes or 8KB, the probability of hash collision will be in

the range of 2
−57

 ~2
−87

, far smaller than the undetected

hardware error rate. While using more strong SHA-256 hash

function，even for a ultra-large-scale DE storage system with

2048EB (2
72

bytes) physical capacity that is larger than the

total volume of digital data (about 1800EB) generated by the

world in 2011[1], the probability of hash collision is still

extremely small, only 2
−129

 and 2
−139

 for an expected chunk

size of 256 bytes and 8KB respectively. Considering that the

567

http://en.wikipedia.org/wiki/Hash_collision
http://en.wikipedia.org/wiki/Hash_collision
http://en.wikipedia.org/wiki/Hash_collision
http://en.wikipedia.org/wiki/Hash_collision
http://en.wikipedia.org/wiki/Hash_collision

www.manaraa.com

storage and CPU overheads of the 256 bits SHA-256 hash

value is relatively higher than that of the SHA-1 hash value, it

is appropriate to use SHA-1 hash function for compare-by-

hash in petabyte-scale DE storage systems. Summary, the hash

functions that can be used in the DE storage systems include

standards such as SHA-1, SHA-256 and others. These provide

a far smaller probability of data loss than the risk of an

undetected hardware error and can be in the order of 2
−87

(using SHA-1) or 2
−183

(using SHA-256) per petabyte (2
37

 data

chunks with an expected chunk size of 8KB) of data.

Therefore, using compare-by-hash in DE storage system to

improve system throughput is reasonably safe and feasible.

4. Conclusions

An ideal Duplicate Elimination storage system should be

not only space-efficient (i.e., with high duplicate elimination

ratio) but also with high performance. So, designing a DE

storage system should take into consideration many possible

alternatives. This paper studied two important kinds of

alternatives: fixed-sized blocking versus content-based

chunking, and compare-by-value versus compare-by-hash.

This paper implemented a content-based chunking

algorithm and evaluated its performance in terms of

calculation efficiency and duplicate elimination ratio. The

experimental results showed that the implemented CDC

algorithm incurs reasonably low CPU overhead, and it

outperforms the fixed-sized blocking algorithm in term of

duplicate elimination ratio by a factor of 1.17 to 3.54

depending on the different data sets. This suggests that

selecting the content-based chunking algorithm rather than the

fixed-sized blocking algorithm is more appropriate for DE

storage systems.

 To identify duplicate data chunks, compare-by-hash is

more efficient than compare-by-value. But compare-by-hash

may result in data corruption due to hash collision, and hence

has caused much controversy in the research community. This

paper studied the probability of hash collision in petabyte-

scale DE storage systems through theoretical analysis. The

results indicate that using appropriate cryptographic hash

function such as SHA-1 can provide far smaller probability of

data corruption than the risk of an undetected hardware error.

So, it is reasonably feasible to employ compare-by-hash in

large-scale DE storage systems to improve duplicate

elimination performance.

References

[1] IDC Predictions 2012: Competing for 2020,

http://cdn.idc.com/research/Predictions12/Main/downloads/IDCTOP10

Predictions2012.pdf (December 2011).

[2] B. Zhu, H. Li, H. Patterson, Avoiding the disk bottleneck in the data

domain deduplication file system, in: Proceedings of the 6th USENIX

Conference on File And Storage Technologies, 2008.

[3] T. Yang, H. Jiang, D. Feng, Z. Niu, K. Zhou, Y. Wan, DEBAR: a

scalable high performance deduplication storage system for backup and

archiving, in: In IEEE International Symposium on Parallel and

Distributed Processing, 2010.

[4] P. Shilane, M. Huang, G. Wallace, W. Hsu, Wan optimized replication

of backup datasets using stream-informed delta compression, in:

Proceedings of the 10th USENIX Conference on File And Storage

Technologies, 2012.

[5] K. Srinivasan, T. Bisson, G. Goodson, K. Voruganti, idedup: Latency-

aware, inline data deduplication for primary storage, in: Proceedings of

the 10th USENIX Conference on File And Storage Technologies, 2012.

[6] A. C. amd Vivekenand Vellanki and Z. Kurmas, “Protecting file

systems: A survey of backup techniques,” in In Proceedings Joint

NASA and IEEE Mass Storage Conference, March 1998.

[7] S. Quinlan, S. Dorward., Venti: a new approach to archival storage, in:

Proceedings of the USENIX Conference on File And Storage

Technologies, 2002.

[8] B. HONG, I. PLANTENBERG, I. I. E. LONG, M. SIVAN-ZIMET,

Duplicate data elimination in a san file system, in: Proceedings of the

21st IEEE / 12th NASA Goddard Conference on Mass Storage Systems

and Technologies, 2007.

[9] A. Muthitacharoen, B. Chen, and D. Mazieres. A low bandwidth

network file system. In Proceedings of the 18th ACM Symposium on

Operating Systems Principles (SOSP‟01), Oct. 2001. 174–187.

[10] C. Liu, Y. Lu, C. Shi, G. Lu, Du, D.H.C. and D. Wang. ADMAD:

Application-Driven Metadata Aware De-duplication Archival Storage

System. In Proceedings of the Fifth IEEE International Workshop on

Storage Network Architecture and Parallel I/Os, 2008.

[11] ESHGHI, K. A framework for analyzing and improving content-based

chunking algorithms. Tech. Rep. HPL-2005-30(R.1), Hewlett Packard

Laboratories, Palo Alto, 2005. 2-11.

[12] Deepak R. Bobbarjung, Suresh Jagannathan, and Cezary Dubnicki.

Improving duplicate elimination in storage systems. ACM Transactions

on Storage. vol. 2, no. 4, pp. 424-448, 2006.

[13] E. Kruus, C. Ungureanu, and C. Dubnicki. Bimodal content defined

chunking for backup streams. In Proceedings of the 8th Conference on

File and Storage Technologies, February 2010.

[14] R. Rivest. The MD4 message digest algorithm. Request For Comments

(RFC) 1186, IETF, Oct. 1990.

[15] R. Rivest. The MD5 message-digest algorithm. Request For Comments

(RFC) 1321, IETF, Apr. 1992.

[16] Secure Hash Standard, U.S. Department of Commerce N.I.S.T.,

National Technical Information Service, Springfield, VA, April 1995.

[17] NIST FIPS 180-2: Secure Hash Standard, Aug. 2002.

[18] Henson, V. An analysis of compare-by-hash. In HotOS: Hot Topics in

Operating Systems, USENIX, 2003. 13–18.

[19] S. Rhea, R. Cox, A. Pesterev, Fast, inexpensive content-addressed

storage in foundation, in: Proceedings of the 2008 USENIX Annual

Technical Conference, Boston, Massachusetts, 2008, pp. 143–156.

[20] BRODER, A. Some applications of Rabin‟s fingerprinting method. In

Sequences II: Methods in Communications, Security, and Computer

Science, R. Capocelli, A. D. Santis, and U. Vaccaro, Eds. Springer-

Verlag, 1993, pp. 143–152.

[21] J. Black. Compare-by-hash: A reasoned analysis. In USENIX Annual

Tech. Conf., 2006. 85-90.

[22] C. M. Riggle and S. G. McCarthy. Design of error correction systems

for disk drives. IEEE Transactions on Magnetics, July 1998.

34(4):2362–2371.

[23] IBM. IBM OEM hard disk drive specification for DPTA-3xxxxx 37.5

GB–13.6 GB 3.5 inch hard disk drive with ATA interface, revision

(2.1). (Deskstar 34GXP and 37GP hard disk drives), July 1999.

[24] Hitachi Global Storage Technologies. Hitachi hard disk drive

specification: Deskstar 7K400 3.5 inch Ultra ATA/133 and 3.5 inch

Serial ATA hard disk drives, version 1.4, Aug. 2004.

568

http://en.wikipedia.org/wiki/SHA-1
http://en.wikipedia.org/wiki/SHA-256
http://en.wikipedia.org/wiki/Data_corruption
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Cryptographic_hash_function

