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 Abstract –Duplicate Elimination (DE) is a specialized data 

compression technique for eliminating duplicate copies of repeating 

data to optimize the use of storage space or bandwidth. The most 

common form of DE implementation works by dividing files as 

chunks and comparing chunks of data to detect duplicates. This paper 

implements a content-based chunking algorithm to improve duplicate 

elimination over fixed-sized blocking, and evaluates the methods of 

chunk comparison, that is, compare-by-hash versus compare-by-

value. It indicates that compare-by-hash is efficient and feasible even 

employed in ultra-large-scale storage systems.  

 Index Terms – Data Storage, Duplicate Elimination, Compare- 

by-Hash. 

1.  Introduction 

In recent years, we have seen rapid growth in the amount 

of digital information, which poses big challenges for modern 

enterprises to protect their valuable data [1]. In order to   

reduce the amount of storage needed for backups, storage-

based DE is now getting popularity [2, 3, 4, 5]. It has been 

proved very effective in applications where many copies of 

very similar or even identical data are stored on a single disk 

or in the case of data backups where most data in a given 

backup is unchanged from the previous one [6]. Traditional 

backup systems try to reduce storage requirement by hard 

linking files that have not changed or storing differences 

between files. But hard linking does not help with large files 

that are changed in small ways, such as an email database; 

differences only find duplicates in adjacent versions of a single 

file. In contrast, storage-based DE eliminates duplicate in the 

global system, hence can achieve far more efficient data 

compression than traditional backup methods. DDFS [2], for 

example, reported a 38.54:1 cumulative compression rate 

when backing up a real world data center over a time span of 

one month. 

The most common form of DE implementation works by 

dividing data stream as chunks and comparing chunks of data 

to detect duplicates. Dividing data stream as fixed-sized blocks 

is straightforward and consonant with mainstream file systems 

in which files are managed as fixed-sized logical blocks, and 

there indeed exist DE systems such as Venti [7] and DDE [8] 

that eliminate duplicated copies of fixed size data blocks. 

However, fixed-sized blocking will result in shifting-offsets-

problem that a single byte inserted at the start of a large file 

would shift all the block boundaries, and thereby thwart any 

potential storage savings [9]. In order to solve the shifting-

offset-problem, other chunking algorithms, such as the 

semantic-based chunking algorithm ADMAD (Application-

Driven Metadata Aware Deduplication) [10], and the content-

based chunking algorithms CDC (Content-Defined Chunking) 

[9], TTTD (two-threshold, two-divisor) [11], Fingerdiff [12] 

and BiCDC (Bimodal Content Defined Chunking) [13] etc. 

have been proposed. The most commonly used CDC algorithm 

uses hashing technique to determine chunk boundaries to 

divide the data stream into variable-sized data chunks. 

Compared with fixed-sized blocking, the content-based 

chunking algorithms may be more time-consuming but more 

effective in duplicate elimination. This paper implements a 

content-based chunking algorithm in order to evaluate its CPU 

overhead and compare it with the simplest fixed-sized 

blocking method in term of duplicate elimination effectiveness.  

There are two methods to determine whether two data 

chunks are identical: compare-by-value and compare-by-hash. 

Compare-by-value does a byte by byte comparison of the 

newly written chunk with the previously stored chunk. 

However, such a comparison is onerous since it‟s only 

possible by first reading the previously stored chunk from disk. 

This would make it extremely difficult if not impossible to 

maintain the needed throughput. Compare-by-hash relies on 

the use of cryptographic hash functions [14, 15, 16, 17] to 

identify duplicate chunks of data. Two chunks with the same 

hash value are assumed to be identical. This hash-based 

comparison is more efficient than otherwise the byte by byte 

comparison of chunks since a hash value is usually far smaller 

than the chunk itself and can be stored compactly in a hash 

table or in-memory cache. However, there exists the 

probability of hash collision that two different chunks generate 

the same hash value. Thus, the concern arises that data 

corruption can occur if a hash collision occurs, and additional 

bit-for-bit validation of original data for guaranteed data 

integrity should be offered [18, 19]. This paper analyzes the 

probability of hash collision when using compare-by-hash in 

large-scale storage systems. It indicates that if using 

appropriate cryptographic hash function, the  compare-by-hash 

is feasible even employed in ultra-large-scale storage systems. 

2.  The Content-Based Chunking Algorithm 

The most commonly used content-based chunking 

algorithm is the CDC algorithm [9], which uses hashing 

technique to determine chunk boundaries to divide the data 

stream into variable-sized data chunks. Specifically, it 

calculates the Robin hash [20] of each overlapping w byte 

segment of the file. When the low-order k bits of a segment‟s 

hash value equals to a constant pre-determined value, the 
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segment constitutes a chunk boundary to divide the data 

stream into variable-sized chunks. The parameter k determines 

the expected chunk size that is 2
k 
bytes.  

A. Algorithm Implementation 

In order to evaluate its performance in terms of CPU 

overhead and chunking speed, we have implemented the CDC 

algorithm as following:  

{input the file F to be divided; 

        let anchorMask=00001FFFH; magicValue=61; M=2
32

; 

p=17; w=48; 

FILE *f =open (F, ′r′); char b[w], c, c1; 

cleaning the chunk-queue L, integer-queue Q and char-

queue C; 

if (length ( f ) <=w) { L.add(F); exit;} 

fgets(b,w,f); 

pos=w−1; RF= (b[0]×p
w-1

+b[1]×p
w-2

+…+b[w−1]) mod M; 

if (RF&anchorMask==magicValue)  Q.add(pos); 

for(i=0; i<=w−1;i++)  C.add(b[i]); 

while(c=fgetc( f )≠EOF){ 

C.add(c); c1=C.move(); pos++; 

RF= ( p×RF + c − c1×p
w
) mod M; 

if (RF&anchorMask==magicValue)  Q.add(pos);} 

firstpos=0; 

while (!empty(Q)){ 

pos=Q.move(); 

chunk=substring(f, firstpos, pos−firstpos); 

firstpos=pos; 

L.add(chunk);} 

return( L).} 

       In the above algorithm, parameter k is implicit in 

anchorMask, which equals to „00001FFFH‟, implying that k is 

13 and the expected chunk size is 8KB.  

B. Algorithm Performance 

The algorithm uses a w-bytes-in-size sliding window 

passing along the file stream to seek out more naturally 

occurring internal chunk boundaries. This sliding-window 

approach makes the algorithm very compute-efficient.  

Let 
1 2, ... ...wa a a  be the byte stream of the file, the hash 

function used to identify chunk boundaries is as follow: 
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    The calculation takes places in a ring M with multiplication 

and addition. M and p are constants and p is a prime. This hash 

function has two important characteristics which can be used 

to speed up the chunking process.  

 The calculation time is linear in w (1 multiplication 

and 1 addition). 
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So, the time complexity of this hash algorithm is O(w) with 

w be the number of bytes to be hashed. 

   Easy to calculate consecutive w bytes. 

2 3 1( , ... )p whash a a a 
 

1

1 2 1 1( , ... ) .w

p w wp hash a a a a a p 

               (3) 

    The algorithm first computes the hash of the first w bytes 

using formula (1), and then it just needs to slide forward one 

byte to compute the hash of next w bytes using formula (3). To 

further speed up the process, we can compute a table of all 

possible values of 1( )modw

ia p M  for all 256 byte values 

and uses it throughout. 

     We run the algorithm on a computer with Inter Celeron 

2.40GHz CPU, 512MB RAM and a 7200 RPM 80GB Seagate 

ST3802110A IDE disk. Time spent on content-defined 

chunking mainly includes detecting the chunk boundary over 

the sliding-window. The measured chunking speed is about 

45.14MB/s with an average CPU utilization of 20.5%. While 

running the simple fixed-sized blocking algorithm with block 

size of 8KB on the same computer, we got a blocking speed of 

45.27MB/s with an average CPU utilization of 17.3%. The 

above values are an average of 50 runs of the experiment, 

using different file sizes from 100 KB to 100 MB. The results 

indicate that the CPU overhead of the implemented CDC 

algorithm is reasonably low and the chunking speed is mainly 

limited by the disk I/O throughput before CPU becomes a 

bottleneck.   

      We also compared performance of the CDC algorithm and 

the fixed-sized blocking algorithm in term of duplicate 

elimination ratio. The data sets used for experiment include 

software distribution sources, web content, geographic 

information system data and research papers and reports in 

various formats and languages. We cannot present the detailed 

test figures here due to page limitation; instead, we give the 

experimental conclusion that the CDC algorithm outperforms 

the fixed-sized blocking algorithm in term of duplicate 

elimination ratio by a factor of 1.17 to 3.54 depending on the 

different data sets. Summary, selecting the CDC algorithm 

rather than the fixed-sized blocking algorithm is more 

appropriate for DE storage systems.  

3.  The Feasibility of Compare-By-Hash 

A DE storage system could use the compare-by-value 

method to determine that two chunks are identical. But this 

method incurs heavy disk I/O overhead that would inevitably 

degrade the DE storage performance. To avoid this overhead, 

many DE storage systems [2, 3, 4, 5] rely on the compare-by-

hash method to determine the identity of a chunk. Since there 

exists the probability of hash collision that may result in data 

corruption, the feasibility of using compare-by-hash in DE 

storage systems have caused much controversy in the research 
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community [18, 19, 21]. This paper argues that, to design a DE 

storage system with desired sized of capacity, we should select 

an appropriate collision-resistant hash function and analyze the 

probability of hash collision. If the probability of hash 

collision is extremely small, many orders of magnitude smaller 

than hardware error rate that is currently about 10
−12

~10
−15 

[22, 

23, 24]. When data corruption occurs, it will almost certainly 

be the result of undetected errors in hardware devices, and not 

from a collision. 

A. Calculating the Probability of Hash Collision 

Existing collision-resistant hash functions such as MD4 

[14], MD5 [15], SHA-1[16], SHA-256, SHA-384 and SHA-

512 [17] have good characteristic of uniformity, that is, the 

generated hash values are essentially random and independent 

of each other no matter how similar the inputs are.  

Supposing the length of the hash value generated by a 

collision-resistant hash function is b bits, and Θ is the set of all 

possible hash values, we have |Θ|=2
b
. Let Ω be the set of all 

unique data chunks, DΩ, H(D) be the hash value of D, and  

Pr(H(D)=h) be the probability that H(D) equals to h,  then we 

have:  

DΩ, hΘ, Pr(H(D)=h)=1/2
b 
.
                                                 

 (4)             

Let MΩ be the set of all the unique data chunks stored 

in the DE storage system, |M|=n, p be the probability that there 

exist hash collisions in the DE storage system, and then we 

have: 

p=Pr(A, B M|((A≠B)&(H(A)=H(B))).                       (5) 

     Without loss of generality, assuming that the n unique data 

chunks (D1, D2…Dn ) are stored into the DE storage system 

sequentially.  Let Ek (k=1, 2…n) be the event that H(Dk) is not 

collided with the previously stored hash values, then we have: 
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 Combining formulas (4) and (6), having： 

        1 (1 2 / 2 ) (1 3 / 2 ) ... (1 ( 1) / 2 ).b b bp n               (7) 

      According to formula (7), when 1 ≤ n ≤ 2
(b+1)/2

, there exists 

the following inequality:                          

   0.316 ( 1) / 2 0.5 ( 1) / 2 .b bn n p n n                        (8) 

      Inequality (8) indicates that when n<<2
b/2 

the probability of 

hash collision will be very small, while n is getting close to 2
b/2

, 

the probability of hash collision will experience a sharp 

increase. 

      It is not convenient to calculate p using formula (7) and 

inequality (8). For convenience of calculation, when n<<2
b/2

, 

we can approximately assume that the events of hash collision 

are independent to each other. According to formula (4), the 

probability of hash collision by a pair of different data chunks 

is 1/2
b
, and n different data chunks have a total of n(n−1)/2 

different pairs, then we have:  

1( 1)/2 2 ( 1)/ 21 (1 1/ 2 ) 1 (1 1/ 2 )
b bb n n b n np

          

            11 exp( ( 1) / 2 ).bn n                                             (9) 

When n<<2
b/2

, n(n−1)/2
b+1 

<<1, then we have:  

1 11 exp( ( 1) / 2 ) ( 1) / 2 .b bp n n n n                      (10) 

B. The Probability of Hash Collision in DE Systems 

Let C be the physical capacity of the large-scale DE 

storage system, s be the expected chunk size, then n=C/s. We 

calculate the probability of hash collision under different 

design parameters of the DE storage system using formula (10). 

The calculation results are listed in TABLE I. 

TABLE I    Hash Collision Probability in Different DE Storage Systems 

C (byte) s (byte) n H b(bit) p 

260 28 252 MD5 128 2−25 

260 213 247 MD5 128 2−35 

250 28 242 MD5 128 2−45 

250 213 237 MD5 128 2−55 

260 28 252 SHA-1 160 2−57 

260 213 247 SHA-1 160 2−67 

250 28 242 SHA-1 160 2−77 

250 213 237 SHA-1 160 2−87 

250 28 242 SHA-256 256 2−173 

250 213 237 SHA-256 256 2−183 

272 28 264 SHA-256 256 2−129 

272 213 259 SHA-256 256 2−139 

The results in TABLE I show that for petabyte-scale DE 

storage systems (2
50

bytes≤C＜2
60

bytes) with an expected size 

of 256 bytes or 8KB, using MD5 hash function with 128 bits 

hash value, the probability of hash collision is in the range of 

2
−25

~2
−55

, which is higher than the undetected hardware error 

rate ( currently about 10
−12

~10
−15 

,i.e., 2
−40

~2
−50

) in most cases. 
   

This indicates that using 128 bits length MD5 hash in 

petabyte-scale DE storage systems is not safe enough 

according to the reference criterion of hardware error rate. 

However, when using 160 bits length SHA-1 hash for 

petabyte-scale DE storage systems with an expected size of 

256 bytes or 8KB, the probability of hash collision will be in 

the range of  2
−57

 ~2
−87

, far smaller than the undetected 

hardware error rate. While using more strong SHA-256 hash 

function，even for a ultra-large-scale DE storage system with 

2048EB (2
72 

bytes) physical capacity that is larger than the 

total volume of digital data ( about 1800EB) generated by the 

world in 2011[1], the probability of hash collision is still 

extremely small, only 2
−129

 and 2
−139

 for an expected chunk 

size of 256 bytes and 8KB respectively. Considering that the 
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storage and CPU overheads of the 256 bits SHA-256 hash 

value is relatively higher than that of the SHA-1 hash value, it 

is appropriate to use SHA-1 hash function for compare-by-

hash in petabyte-scale DE storage systems. Summary, the hash 

functions that can be used in the DE storage systems include 

standards such as SHA-1, SHA-256 and others. These provide 

a far smaller probability of data loss than the risk of an 

undetected hardware error and can be in the order of 2
−87 

(using SHA-1) or 2
−183 

(using SHA-256) per petabyte (2
37

 data 

chunks with an expected chunk size of 8KB) of data. 

Therefore, using compare-by-hash in DE storage system to 

improve system throughput is reasonably safe and feasible. 

4. Conclusions 

An ideal Duplicate Elimination storage system should be 

not only space-efficient (i.e., with high duplicate elimination 

ratio) but also with high performance. So, designing a DE 

storage system should take into consideration many possible 

alternatives. This paper studied two important kinds of 

alternatives: fixed-sized blocking versus content-based 

chunking, and compare-by-value versus compare-by-hash.  

This paper implemented a     content-based chunking 

algorithm and evaluated its performance in terms of 

calculation efficiency and duplicate elimination ratio. The 

experimental results showed that the implemented CDC 

algorithm incurs reasonably low CPU overhead, and it 

outperforms the fixed-sized blocking algorithm in term of 

duplicate elimination ratio by a factor of 1.17 to 3.54 

depending on the different data sets. This suggests that 

selecting the content-based chunking algorithm rather than the 

fixed-sized blocking algorithm is more appropriate for DE 

storage systems. 

   To identify duplicate data chunks, compare-by-hash is 

more efficient than compare-by-value. But compare-by-hash 

may result in data corruption due to hash collision, and hence 

has caused much controversy in the research community. This 

paper studied the probability of hash collision in petabyte-

scale DE storage systems through theoretical analysis. The 

results indicate that using appropriate cryptographic hash 

function such as SHA-1 can provide far smaller probability of 

data corruption than the risk of an undetected hardware error. 

So, it is reasonably feasible to employ compare-by-hash in 

large-scale DE storage systems to improve duplicate 

elimination performance. 
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